Two-qudit geometric phase evolution under dephasing
نویسندگان
چکیده
منابع مشابه
Geometric nature of the environment-induced Berry phase and geometric dephasing.
We investigate the geometric phase or Berry phase acquired by a spin half which is both subject to a slowly varying magnetic field and weakly coupled to a dissipative environment (either quantum or classical). We study how this phase is modified by the environment and find that the modification is of a geometric nature. While the original Berry phase (for an isolated system) is the flux of a mo...
متن کاملGeometric dephasing in zero-field magnetic resonance
Geometric phases acquired randomly can give rise to coherence dephasing in nuclear spin systems, equivalent to spin relaxation. We calculate the form and extent of this geometric dephasing in a number of model systems involving the motion of Xe nuclei in shaped containers. The dephasing is calculated in two ways: first, using an analytical treatment of the diffusive motion of individual nuclei,...
متن کاملRobustness of geometric phase under parametric noise
We study the robustness of geometric phase in the presence of parametric noise. For that purpose we consider a simple case study, namely a semiclassical particle which moves adiabatically along a closed loop in a static magnetic field acquiring the Dirac phase. Parametric noise comes from the interaction with a classical environment which adds a Brownian component to the path followed by the pa...
متن کاملsynthesis of platinum nanostructures in two phase system
چکیده پلاتین، فلزی نجیب، پایدار و گران قیمت با خاصیت کاتالیزوری زیاد است که کاربرد های صنعتی فراوانی دارد. کمپلکس های پلاتین(ii) به عنوان دارو های ضد سرطان شناخته شدند و در شیمی درمانی بیماران سرطانی کاربرد دارند. خاصیت کاتالیزوری و عملکرد گزینشی پلاتین مستقیماً به اندازه و- شکل ماده ی پلاتینی بستگی دارد. بعضی از نانو ذرات فلزی در سطح مشترک مایع- مایع سنتز شده اند، اما نانو ساختار های پلاتین ب...
Geometric Evolution of Bilayers under the Functionalized Cahn-Hilliard Equation
We employ a multiscale analysis to derive a sharp interface limit for the dynamics of bilayer structures of the Functionalized Cahn-Hilliard equation. In contrast to analysis based upon single-layer interfaces, we show that the Stefan and MullinsSekerka problems derived for the evolution of single-layer interfaces for the CahnHilliard equation, [Pego (1989)] are trivial in this context, and the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Physics
سال: 2018
ISSN: 0003-4916
DOI: 10.1016/j.aop.2018.01.005